Predicting and verifying the intended and unintended consequences of large-scale ocean iron fertilization

نویسندگان

  • John J. Cullen
  • Philip W. Boyd
چکیده

Ocean iron fertilization (OIF) is being considered as a strategy for mitigating rising atmospheric CO2 concentrations. One model for implementation is the sale of carbon offsets. Modeling studies predict that OIF has the potential to produce a material difference in the rise of atmospheric CO2 over the next several decades, but this could only be attained by alteration of the ecosystems and biogeochemical cycles of much of the world’s oceans. The efficacy of OIF on this scale has not been proven. However, the consequences of successful implementation must be considered now, for 2 important reasons: (1) to determine if the environmental effects would be predictable and verifiable, and if so, acceptable; and (2) to establish whether the basis for valuing carbon offsets — an accurate audit of net reductions in cumulative greenhouse gas potential over 100 yr — can be met. Potential side-effects of widespread OIF that must be considered include a reduced supply of macronutrients to surface waters downstream of fertilized regions, increased emissions of the potent greenhouse gases nitrous oxide and methane, and changes in the extent or frequency of coastal hypoxia. Given the uncertainties inherent in ocean models, predictions of environmental effects must be backed up by measurements. Thus, to go forward with confidence that the effects of rising CO2 could indeed be mitigated through OIF over the next century, and to establish the foundations for auditing carbon offsets, it must be explicitly demonstrated that methods exist to predict and detect downstream effects of OIF against the background of both climate variability and global warming. We propose that until the side-effects of widespread OIF can be shown to be verifiable — and there is good reason to believe that they cannot — OIF should not be considered a viable technology for climate mitigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology

Ongoing global warming induced by anthropogenic emissions has opened the debate as to whether geoengineering is a ‘quick fix’ option. Here we analyse the intended and unintended effects of one specific geoengineering approach, which is enhanced weathering via the open ocean dissolution of the silicate-containing mineral olivine. This approach would not only reduce atmospheric CO2 and oppose sur...

متن کامل

Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels

[1] Iron fertilization of macronutrient-rich but biologically unproductive ocean waters has been proposed for sequestering anthropogenic carbon dioxide (CO2). The first carbon export measurements in the Southern Ocean (SO) during the recent SO-Iron Experiment (SOFeX) yielded 900 t C exported per 1.26 t Fe added. This allows the first realistic, data-based feasibility assessment of large-scale i...

متن کامل

Is ocean fertilization credible and creditable?

It is possible that the increase in atmospheric carbon dioxide, which drives global warming, could be partially mitigated by adding iron to ocean waters. In their Policy Forum "Dis-crediting ocean fertilization" (12 Oct., p. 309), S. W. Chisholm et al. argue that "the known consequences and uncertainties of ocean fertilization already far outweigh hypothetical benefits." We believe that they ha...

متن کامل

Open Ocean Iron Fertilization for Scientific Study and Carbon Sequestration

The trace element iron has been recently shown to play a critical role in nutrient utilization, phytoplankton growth and therefore the uptake of carbon dioxide from the surface waters of the global ocean. Carbon fixation in the surface waters, via phytoplankton growth, shifts the ocean/atmosphere exchange equilibrium for carbon dioxide. As a result, levels of atmospheric carbon dioxide (a green...

متن کامل

Iron fertilization in the ocean and consequences for the global carbon cycle

It has been suggested that fertilizing the ocean with iron can stop the continuing increase of atmospheric carbon dioxide by enhancing the biological uptake of carbon. This would decrease the surface ocean partial pressure of carbon dioxide, thus forcing the absorbtion of carbon dioxide from the atmosphere. Using a five-box model of the ocean circulation, we study the response of the ocean due ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008